International math and science test results have consistently shown for over a decade that Asian students from China, Japan, Singapore and Korea perform better than American students. In spite of such results, the US continues to excel in scientific and technological innovation as measured by the number of Nobel prizes and number of international patent filings. Most of the recent breakthrough innovations have come from the United States. Six of the top ten highest ranked universities are in the United States. There is only one Silicon Valley in the world and it is in the United States. This valley represents more of a state of mind rather than a physical place. Why is it? Do Americans focus more on scientific reasoning than facts and content? Is there greater focus on rote learning in Asia? Do Americans foster more creativity and greater exploration? Does freedom of expression in America encourage more questioning and better reasoning? Though it does not clearly answer these questions, a new study recently done at Ohio State University tries to shed some light on the question of learning facts versus reason. Here is a report of this study:

Newswise — A study of college freshmen in the United States and in China found that Chinese students know more science facts than their American counterparts -- but both groups are nearly identical when it comes to their ability to do scientific reasoning.

Neither group is especially skilled at reasoning, however, and the study suggests that educators must go beyond teaching science facts if they hope to boost students’ reasoning ability.

Researchers tested nearly 6,000 students majoring in science and engineering at seven universities -- four in the United States and three in China. Chinese students greatly outperformed American students on factual knowledge of physics -- averaging 90 percent on one test, versus the American students’ 50 percent, for example.

But in a test of science reasoning, both groups averaged around 75 percent -- not a very high score, especially for students hoping to major in science or engineering.

The research appears in the January 30, 2009 issue of the journal Science.

Lei Bao, associate professor of physics at Ohio State University and lead author of the study, said that the finding defies conventional wisdom, which holds that teaching science facts will improve students’ reasoning ability.

“Our study shows that, contrary to what many people would expect, even when students are rigorously taught the facts, they don’t necessarily develop the reasoning skills they need to succeed,” Bao said. “Because students need both knowledge and reasoning, we need to explore teaching methods that target both.”

Bao directs Ohio State’s Physics Education Research Group, which is developing new strategies for teaching science, technology, engineering and mathematics (STEM) disciplines. For this study, he and his colleagues across the United States and in China decided to compare students from both countries, because the educational systems are so different.

In the United States, only one-third of students take a year-long physics course before they graduate from high school. The rest only study physics within general science courses. Curricula vary widely from school to school, and students can choose among elective courses.

In China, however, every student in every school follows exactly the same curriculum, which includes five years of continuous physics classes from grades 8 through 12. All students must perform well on a national exam if they hope to enter college, and the exam contains advanced physics problems.

“Each system has its strengths and weaknesses,” Bao said. “In China, schools emphasize a very extensive learning of STEM content knowledge, while in the United States, science courses are more flexible, with simpler content but with a high emphasis on scientific methods. We need to think of a new strategy, perhaps one that blends the best of both worlds.”

The students who participated in the study were all incoming freshmen who had just enrolled in a calculus-based introductory physics course. They took three multiple-choice tests: two which tested knowledge of physics concepts, and one which tested scientific reasoning.

The first test, the Force Concept Inventory, measures students’ basic knowledge of mechanics -- the action of forces on objects. Most Chinese students scored close to 90 percent, while the American scores varied widely from 25-75 percent, with an average of 50.

The second test, the Brief Electricity and Magnetism Assessment, measures students’ understanding of electric forces, circuits, and magnetism, which are often considered to be more abstract concepts and more difficult to learn than mechanics. Here Chinese students averaged close to 70 percent while American students averaged around 25 percent -- a little better than if they had simply picked their multiple-choice answers randomly.

The third test, the Lawson Classroom Test of Scientific Reasoning, measures science skills beyond the facts. Students are asked to evaluate scientific hypotheses, and reason out solutions using skills such as proportional reasoning, control of variables, probability reasoning, correlation reasoning, and hypothetical-deductive reasoning. Both American and Chinese students averaged a 75 percent score.

Bao explained that STEM students need to excel at scientific reasoning in order to handle open-ended real-world tasks in their future careers in science and engineering.

Ohio State graduate student and study co-author Jing Han echoed that sentiment. “To do my own research, I need to be able to plan what I’m going to investigate and how to do it. I can’t just ask my professor or look up the answer in a book,” she said.

“These skills are especially important today, when we are determined to build a society with a sustainable edge in science and technology in a fast-evolving global environment,” Bao said.

He quickly added that reasoning is a good skill for everyone to possess -- not just scientists and engineers.

“The general public also needs good reasoning skills in order to correctly interpret scientific findings and think rationally,” he said.

How to boost scientific reasoning? Bao points to inquiry-based learning, where students work in groups, question teachers and design their own investigations. This teaching technique is growing in popularity worldwide.

Ohio State is exploring inquiry-based learning in its physics classes. Here students use hand-held electronic devices called clickers to answer multiple-choice questions during lectures. They work together to answer questions, and professors use the clicker interaction to guide student learning towards a more investigative style. The department is also adopting an inquiry-based curriculum for undergraduate physics courses.

Bao and Han’s coauthors on the study included Jing Wang, Qing Liu and Lin Ding of Ohio State; Tianfan Cai and Yufeng Wang of Beijing Jiaotong University; Kathy Koenig of Wright State University; Kai Fang of Tongji University; Lili Cui of the University of Maryland at Baltimore County; Ying Luo of Beijing Normal University; and Lieming Li and Nianle Wu of Tsinghua University.

This research was supported by the Department of Physics at Ohio State.

Related Links:

Can Scientific Reasoning Be Taught?

HEC University Ranking Controversy in Pakistan

Re-Imagining Pakistan

Improving Higher Education in Pakistan

Views: 178

Comment by Riaz Haq on July 16, 2013 at 8:10pm

Here's a NY Times story on study of creativity:

A gift for spatial reasoning — the kind that may inspire an imaginative child to dismantle a clock or the family refrigerator — may be a greater predictor of future creativity or innovation than math or verbal skills, particularly in math, science and related fields, according to a study published Monday in the journal Psychological Science.

The study looked at the professional success of people who, as 13-year-olds, had taken both the SAT, because they had been flagged as particularly gifted, as well as the Differential Aptitude Test. That exam measures spatial relations skills, the ability to visualize and manipulate two-and three-dimensional objects. While math and verbal scores proved to be an accurate predictor of the students’ later accomplishments, adding spatial ability scores significantly increased the accuracy.

The researchers, from Vanderbilt University in Nashville, said their findings make a strong case for rewriting standardized tests like the SAT and ACT to focus more on spatial ability, to help identify children who excel in this area and foster their talents.

“Evidence has been mounting over several decades that spatial ability gives us something that we don’t capture with traditional measures used in educational selection,” said David Lubinski, the lead author of the study and a psychologist at Vanderbilt. “We could be losing some modern-day Edisons and Fords.”

Following up on a study from the 1970s, Dr. Lubinski and his colleagues tracked the professional progress of 563 students who had scored in the top 0.5 percent on the SAT 30 years ago, when they were 13. At the time, the students had also taken the Differential Aptitude Test.

Years later, the children who had scored exceptionally high on the SAT also tended to be high achievers — not surprisingly — measured in terms of the scholarly papers they had published and patents that they held. But there was an even higher correlation with success among those who had also scored highest on the spatial relations test, which the researchers judged to be a critical diagnostic for achievement in technology, engineering, math and science.

Cognitive psychologists have long suspected that spatial ability — sometimes referred to as the “orphan ability” for its tendency to go undetected — is key to success in technical fields. Earlier studies have shown that students with a high spatial aptitude are not only overrepresented in those fields, but may receive little guidance in high school and underachieve as a result. (Note to parents: Legos and chemistry sets are considered good gifts for the spatial relations set.)

The correlation has “been suspected, but not as well researched” as the predictive power of math skills, said David Geary, a psychologist at the University of Missouri, who was not involved in the study, which was funded by the John Templeton Foundation. The new research is significant, he said, for showing that “high levels of performance in STEM fields” — science, technology, engineering and math — “are not simply related to math abilities.”...

http://www.nytimes.com/2013/07/16/us/study-finds-early-signs-of-cre...

Comment by Riaz Haq on July 9, 2023 at 1:06pm

Athar Osama PIF Facebook post

Today we embark upon a 6-month long learning journey with 60 Pakistani Teachers and 6 Indonesian Teacher Trainers on Holistic Science Teaching.

This is an innovative approach to Teaching Science in a manner that is connected with other branches of knowledge such as History, Philosophy, Ethics, Religion and the Liberal Arts being piloted, to our knowledge, for the first time in the Muslim World.

Over 3 years, we will 6 workshops in Pakistan, Indonesia, and the Arab World - very different cultures, education systems, languages but the same objective: Train Teachers to create Curious Classrooms!

6-8 Grade Science Teachers may register to attend a future workshop at
http://pif.org.pk/scienceteaching/


World Science Collaborative Ltd, in collaboration with, Lahore University of Management Sciences (LUMS), The Aga Khan University – Institute of Education Development (AKU-IED), South East Asian Ministerial Organisation (SEAMEO), Indonesia, and Qatar University, Qatar, as well as partners Khawarzimi Science Society (KSS), Lahore; Pakistan Innovation Foundation, Pakistan, and STEMx – STEM School for the World, Islamabad presents a unique workshop to enable teachers to explore and learn how to teach science holistically.

In our society, teaching of science is often extremely siloed and compartmentalised whereby the science teacher delivers the content in the classroom but does not relate what is being taught to the real world nor brings forth (or draws upon) the diverse body of knowledge available in disciplines such as history, philosophy, religion and ethics. In doing so, he/she runs the risk, at the very least, of leaving the scientific learning unconnected, or much worse, leaving the students more confused than informed.

It is absolutely critical, therefore, to teach science holistically i.e. connect the learning in the classroom with the real world, for example, by:

* Bringing together knowledge from diverse sources and disciplines such as science, history, philosophy, religion, and ethics?

* Using hands-on experiments and play to bring inspiration and insight in the science classroom?

* Planning lessons that adequately address the curious minds of students and encourage critical inquiry?

* Addressing Big Philosophical Questions that stem from scientific discoveries such as Big Bang, Multiverses, Genetics, Evolution, Artificial Intelligence, etc.

The Holistic Teaching of Science Workshop is OPEN to ALL Teachers of Science in Middle School (Grades 6-8) at any public, private, or religious (madrassa) school who struggles with teaching modern science in the classroom and wants to do better.

The Holistic Science Teaching Online (Hybrid) Workshop is 1 of 6 Workshops that will be carried out in Pakistan, Indonesia, and Qatar between Dec 2022 and July 2025.

Comment

You need to be a member of PakAlumni Worldwide: The Global Social Network to add comments!

Join PakAlumni Worldwide: The Global Social Network

Pre-Paid Legal


Twitter Feed

    follow me on Twitter

    Sponsored Links

    South Asia Investor Review
    Investor Information Blog

    Haq's Musings
    Riaz Haq's Current Affairs Blog

    Please Bookmark This Page!




    Blog Posts

    Pakistani Student Enrollment in US Universities Hits All Time High

    Pakistani student enrollment in America's institutions of higher learning rose 16% last year, outpacing the record 12% growth in the number of international students hosted by the country. This puts Pakistan among eight sources in the top 20 countries with the largest increases in US enrollment. India saw the biggest increase at 35%, followed by Ghana 32%, Bangladesh and…

    Continue

    Posted by Riaz Haq on April 1, 2024 at 5:00pm

    Agriculture, Caste, Religion and Happiness in South Asia

    Pakistan's agriculture sector GDP grew at a rate of 5.2% in the October-December 2023 quarter, according to the government figures. This is a rare bright spot in the overall national economy that showed just 1% growth during the quarter. Strong performance of the farm sector gives the much needed boost for about …

    Continue

    Posted by Riaz Haq on March 29, 2024 at 8:00pm

    © 2024   Created by Riaz Haq.   Powered by

    Badges  |  Report an Issue  |  Terms of Service